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�� Introduction
Forecasting is one of the most important capabilities 
for Balance Responsible Parties (BRPs) and several 
emerging trends make this activity increasingly 
challenging. New IT and AI techniques can 
significantly enhance this capability and contribute to 
the accuracy and automation of forecasting. To point 
out the relevance of advanced forecasting, some of 
the following trends deserve particular attention.
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� Rapid penetration of intermittent renewable 
production. 
The exponential growth of renewables means BRPs 
are increasingly exposed to the variability of the 
weather.

� The electrification of society.
Industry, heat and mobility drive electrification and 
renewables are increasingly backed by batteries. 
This means a fast deployment of flexible electric 
assets behind the meter with volatile power 
patterns, making net loads harder to predict.

� Evolving residential metering regimes. 
With large-scale smart meter rollouts underway, 
off-take and injection are measured separately and 
meter allocation regimes reflect real quarter-hour 
measurements as opposed to profiled production 
and consumption patterns. 

� Adoption of (home) energy management 
systems.
Customers increasingly deploy EMS systems to 
optimize their flexible assets. These systems, 
empowered by virtual power plants, bring new data 
feeds allowing for better estimation of load flows. 
As these assets are typically optimized locally and 
on the market, they become harder to predict, 
making the data coming directly from the EMS 
indispensable for accurate forecasting.



4AI in energy sector

� Rising imbalance prices.

Recent years have seen a steady rise in imbalance 
prices and the evolutions described above are 
making forecast errors more likely. The 
combination of increasing imbalance prices and 
forecast errors is driving up the imbalance costs 
for BRPs as shown in Figure 1 for sun and wind 
forecasting error costs. 

Figure 1: Illustrating imbalance costs caused by PV and wind forecasting errors for DA & ID vs measured 
values. Based on data from Elia's open data platform.

Nodis Consulting and ML6 present this whitepaper 
giving recommendations on how BRPs can 
implement an advanced forecasting framework 
powered by a well-managed IT and AI setup. The 
paper focuses on strategies for automated portfolio 
segmentation (chapter 2) and the best practices for 
IT setups for AI model management and near-real-
time forecasting (chapter 3).

� Short-term market evolutions.
The maturing of short-term markets allows for 
BRP position management closer to delivery. 
Intraday trading (ID) is increasing in popularity, 
intraday auctions were recently rolled out and it is 
planned to move the cross-border ID gate closure 
time to 30 minutes before real-time. These 
evolutions reiterate the system operators' ambition 
to facilitate markets closer to real-time, helping 
them reduce imbalances upfront.



Figure 2: Example of hierarchical segmentation where forecasting can occur at any level. Of 
course any tree suited for your approach or needs can be created.
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2. Portfolio segmentation

BRPs are facing increasingly complex portfolio 
management. This complexity stems from a mix of 
diverse consumption patterns and metering regimes 
and the evolution of distributed energy resources. 
Portfolio segmentation provides a structured 
approach to addressing these challenges by grouping 
assets and customers based on shared 
characteristics. Figure 2 provides an example of such 
a hierarchical segmentation. 

Automated hierarchical portfolio 
segmentation

In this chapter, we elaborate on strategies for 
multilevel portfolio segmentation. We introduce how 
automatic ingestion of portfolio master data allows 
for the initial structuring of dynamic portfolios and 
how AI enables further refinement of the portfolio 
segments. With this deep segmentation,  we achieve 
a higher accuracy by enabling the application of 
tailored forecasting models.

Asset and customer segmentation should not simply 
involve basic categorization of assets and grid users 
by energy production types and basic customer 
characteristics such as metering regimes and 
industrial groups. Deeper segmentation levels include 
differentiating between behind the meter setups such 
as PV, EV and heat pumps, types of commerce and 
industries, asset grouping, geolocalisation, etc.



5AI in energy sector

Manual segmentation approaches are increasingly 
challenging to keep pace with the speed and 
complexity of a rapidly evolving portfolio. Automated 
segmentation, driven by clustering techniques, brings 
a transformative edge to portfolio management. 
Initial segmentation can often be based on readily 
available master data, such as customer type, 
consumption category, NACE code, and known asset 
ownership. For example, residential clients can be 
grouped by known attributes like having solar panels 
or electric vehicles. This first level of segmentation 
sets the foundation for further refinement.





In the next phase, various Machine Learning (ML) 
techniques can be used to improve the segmentation. 
This can be achieved by automatically enriching the 
master data, or by applying dynamic clustering 
techniques to further analyse and group the load 
profiles. For instance, a classifier can be trained to 
identify the presence of EVs, heat pumps etc. based 
on consumption patterns, effectively augmenting the 
master data. As figure 3 below illustrates, different 
load profile characteristics can be identified for 
various assets.

When the master data lacks detail or can’t be 
enriched in a valuable way, clustering algorithms can 
be further employed to analyse the underlying load 
profiles to uncover hidden patterns in consumption 
and production behaviours. Clustering techniques 
excel at discovering and grouping clients or assets 
with similar load characteristics, even when these 
patterns are not evident from master data alone. For 
instance, within the segment “SMR31 – EV” a further 
segmentation can be done by further clustering this 
segment into groups such as those who primarily 
charge in the morning, in the evening, or those who 
use their charging station rarely.

The automated segmentation combines clustering 
on master data with clustering on load profiles and 
will continuously and automatically move 
customers in the right segment when new master 

data or metering data becomes available. This 
dynamic updating ensures that segmentation 
structures remain relevant and reflect the latest 
customer and asset behaviours.
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Figure 3: Illustrating the distinct behavioural patterns of different asset categories (classic consumer | PV | EV | 
PV+EV | PV + Heat Pump). The upper row shows the mean offtake trends over a year, while the lower row 

highlights the variability in offtake during weekdays versus weekends/holidays. These illustrate the differences 
in behaviour, but also highlights the variation in consumption magnitudes per asset.

Intuitively, granular data on specific assets or 
segments should provide more precise insights, 
leading to better forecasts. Yet, paradoxically, 
forecasts made at an aggregate level tend to be more 
accurate than aggregating individual forecasts.

Hierarchical forecasting

This phenomenon can be attributed to the superior 
ability of aggregated data to smooth out anomalies 
and capture broader, underlying trends. Nevertheless, 
this implies that valuable, detailed information is not 
being fully exploited to optimize forecasting 
performance.

To reconcile the benefits of both granular and 
aggregate data, a hierarchical forecasting approach 
can be employed. This technique, which leverages 
multi-task learning, enables forecasting across 
multiple levels of granularity, simultaneously 
capturing both specific details and overarching 
trends.

 1Smart Metering Regime 3 enables 15’ measurement readings
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3. Integration of a near-real-
time forecasting system

Most BRPs succeed in generating actionable 
forecasts of their portfolio. However, the transition to 
an automated system with near-real-time forecasts 
across a wide set of variables presents significant 
challenges. As the number of forecasted variables 
increases, managing and maintaining models 
becomes more complex and time-consuming. Without 
proper orchestration, model versioning, and tracking, 
the risks of failure and undetected errors rise 
exponentially. Addressing this requires a shift from 
traditional model development to a more 
comprehensive ML system development approach.

Adhering to advanced MLOps best practices is 
essential for building and maintaining an effective 
automated forecasting system. This includes:

Key aspects of an automated 
forecasting system

Integrating AI-driven forecasting into BRP operations 
provides a systematic, reliable way to enhance 
decision-making. Figure 4 represents a reference 
functional component diagram that provides an 
overview of the different aspects supporting the 
integration of AI models into operational processes, 
ensuring the smooth flow of data from input to 
actionable forecast output.

To fully leverage AI in BRP portfolio management, it 
is essential to integrate forecasting into operational 
processes effectively. This includes:

Integrating forecasting into operations

� Automated and Orchestrated Pipelines
Transitioning from manual workflows, such as 
notebooks and scripts, to automated pipelines 
ensures scalability and reliability. This shift allows 
data science teams to handle complex 
requirements with less manual intervention.

� Segment-Specific Forecasting

Applying different forecasting models based on 
customer segmentation improves accuracy. 
However, frequent updates and an increasing 
number of segments can lead to model 
proliferation. Proper model management tools and 
processes are essential to prevent maintenance 
burdens from overwhelming data science teams.

� Post-Processing and Enhancement

Forecasts must be actionable and accurate 
through steps such as data quality checks, 
aggregation of forecasts, and validation against 
business rules. Handling uncertainty through 
probabilistic methods ensures that forecasts 
remain reliable, even in challenging conditions.

� Model Training and Deployment:

� Model Training: Leveraging historical data to 
train models ensures they are updated 
regularly for accuracy.

� Operational Forecasting: Real-time data 
integration is critical for operational 
processes. Automated data validation and 
mitigation techniques address challenges like 
lagging inputs or missing values.

� Experiment Tracking and Artifact Versioning

Experiment tracking enables teams to record 
changes, results, and metadata across iterations, 
helping to prioritize the best approaches. 
Versioning artifacts such as data, models, and code 
provide full observability, fostering trust and making 
it easier to identify the source of performance shifts 
or anomalies.

� Handling Interdependence of Forecast Variables

Forecasted variables often have interdependencies 
that require advanced techniques like hierarchical 
and multivariate forecasting models. Hierarchical 
models ensure consistency across levels of 
aggregation, while multivariate models benefit from 
automated hyper-parameter tuning and experiment 
tracking. An automated ML system orchestrates 
these processes, significantly reducing complexity.
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By addressing these challenges, automated systems 
enable the transition to near-real-time forecasting 
through streaming data ingestion, automated 
evaluation, and online model deployment. Such 
systems provide a systematic, reliable way to 
enhance decision-making, ensuring the smooth flow 
of data from input to actionable forecast output.

One major challenge with near-real-time forecasting is 
the availability of real-time data inputs. Delayed inputs 
can disrupt forecasting systems, requiring strategies 
to balance latency and accuracy:



Figure 4: Reference functional component diagram for integrating forecasting into operations
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Near-real-time forecasting challenges

� Data Imputation: Techniques like record-based or 
time-based imputation can fill gaps, but recent data 
often has a higher impact on predictions, making 
this approach less reliable.

� Residual forecasting splits forecasting into two 
stages. General trends are predicted using older, 
complete data, while a residual forecast based on 
the most recent data is used to fine-tune these 
trends. This technique helps capture finer details 
without over-reliance on potentially unreliable 
imputations.

� Dynamic latency thresholds can dynamically delay 
forecasts by a tolerable amount of time to ensure 
higher data quality, especially when critical inputs 
are missing. During the delay, older forecasts can 
be served to ensure system continuity.

� Probabilistic forecasting methods quantify the 
uncertainty of the forecasts based on missing data, 
allowing for informed decision-making even in the 
presence of incomplete data.



4. Conclusion

In conclusion, we recommend the implementation of 
an automated segmentation and  forecasting system 
to improve forecasting accuracy and operations. 
Advanced portfolio forecasts allow for accurate 
sourcing across different timelines and can deliver 
insights into the flexibility of non-scheduled assets. 
When additionally applying these forecasting 
techniques to predict wholesale and imbalance 
prices, optimal asset scheduling and real-time 
imbalance steering become readily available.



As outlined in the paper, we consider it necessary to 
apply automated classification and clustering 
techniques allowing for a smart segmentation of your 
portfolio and to leverage the benefits of combining 
granular and aggregated forecasting models.

We believe that when a mature forecasting setup is in 
place, it will create significant value for BRPs by 
leveraging an accurate forecasted portfolio for 
imbalance cost reduction and other forecast-based 
value streams.



Together, Nodis Consulting and ML6 bring a unique 
offering of deep expertise in energy markets and 
artificial intelligence, and enable customers to rapidly 
and incrementally implement a roadmap to bring 
forecasting capabilities to the next level.


a proper forecasting system setup is required to 
manage complexities and integration into operational 
processes.

As the number of forecasted variables and 
requirements for near-real-time results increase, 
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